Bloch-Optimized Dithered-Ultrasound-Pulse RF for Low-Field Inhomogeneous Permanent Magnet MR Imagers

Irene Kuang¹, Nicolas Arango¹, Jason Stockmann^{2,3}, Elfar Adalsteinsson^{1,4}, Jacob White¹

¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States, ²Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States, ³Harvard Medical School, Boston, MA, United States, ⁴Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States

MGH/HST Athinoula A. Martinos Center for Biomedical Imaging

ONE COMMUNITY

ISMRM & SMRT Virtual Conference & Exhibition 08-14 August 2020

Declaration of Financial Interests or Relationships

Speaker Name: Irene Kuang

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Permanent Magnet MR Imagers

✓ Low cost

- ✓ Portable
- ✓ Safe for point-of-care and classroom use
- Inhomogeneous compared to clinical scanners (<1 ppm over head)
- Large negative temperature coefficient (thousands of ppm/°C)

20,000 ppm

50 ppm

500-5,000 ppm

[1] Cooley et al., Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans. Magn., 2018.

[2] McDaniel et al., The MR Cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magn. Res. Med., 2019.

[3] Cooley et al., Implementation of low-cost, instructional tabletop MRI scanners. Int. Soc. Magn. Res. Med., 2014.

[4] Kuang et al., Equivalent-Charge-Based Optimization of Spokes-and-Hub Magnets for Hand-Held and Classroom MR Imaging. Int. Soc. Magn. Res. Med., 2019.

Irene Kuang (#1131)

10,000 ppm

Permanent Magnet MR Imagers

✓Low cost

✓ Portable

- ✓ Safe for classroom and point-of-care use
- Inhomogeneous compared to clinical scanners (<1 ppm over head)
- Large negative temperature coefficient (thousands of ppm/°C)

Low-Cost, Low-Field Inhomogeneous Permanent Magnet Imagers

Low-Cost Ultrasound-Pulse RF Signal Chain

Low-Cost Ultrasound-Pulse RF Signal Chain

Dithered-Pulse RF Generation on Teensy 4.0

One digital output on Teensy 4.0 takes dt = 3.33 ns
#define RFON digitalWriteFast(RF_ENV, true);
#define RFOFF digitalWriteFast(RF_ENV, false);

Dithered-Pulse RF Generation on Teensy 4.0

One digital output on Teensy 4.0 takes dt = 3.33 ns
#define RFON digitalWriteFast(RF_ENV, true);
#define RFOFF digitalWriteFast(RF_ENV, false);

Bloch Equation Simulation Approach

$$\frac{d}{dt} \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} = \begin{pmatrix} -\frac{1}{T_2} & \gamma B_z & -\gamma B_y \\ -\gamma B_z & -\frac{1}{T_2} & \gamma B_x \\ \gamma B_y & -\gamma B_x & -\frac{1}{T_1} \end{pmatrix} \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ M_0 \\ \frac{M_0}{T_1} \end{pmatrix}$$

$$Apply RF \text{ pulse in transverse plane}$$

$$\frac{d}{dt} \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} = \begin{pmatrix} -1 & \gamma B_z \\ -\gamma B_z & -1 & \gamma B_x \\ & -\gamma B_x & -1 \end{pmatrix} \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ M_0 \end{pmatrix}$$

Precompute M

for all frequency/amplitude modulation combinations for all B_0 isochromats within a desired frequency bandwidth Optimize dithered square-wave pulse to flip spins with Matlab genetic algorithm

[5] Wimperis, S., Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments. J. Magn. Res., 1994.

[6] Garwood et al., The Return of the Frequency Sweep: Designing Adiabatic Pulses for Contemporary NMR. J. Magn. Res., 2001.

[7] Maximov et al., Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. J. Chem. Phys., 2008.

Irene Kuang (#1131)

90° M_v component

90° Bloch Simulation Result

Spin evolution of M_x, M_y, M_z component for 1 isochromat (at 8.12 MHz)

Time (microseconds)

16

18

90° RF

0.5

-0.5

-1 L

90° Bloch Simulation Result

Spin evolution of M_x , M_y , M_z component for 3 isochromats (from 8.08–8.18 MHz)

90° RF

90° RF

90° RF

90° Bloch Simulation Result

• Each isochromat curve represents magnetization (M_x , M_y , M_z) of one frequency within an optimized 100 kHz bandwidth

- Phase alignment of $M_{\rm x}$ and $M_{\rm y}$ frequency isochromats at the end of pulse

• 90° flip of M_z

Magnitude and phase for Mx My

90° M_z component $\int_{0}^{0} \int_{0}^{0} \int_{2}^{0} \int_{4}^{0} \int_{6}^{0} \int_{8}^{0} \int_{10}^{10} \int_{12}^{10} \int_{14}^{10} \int_{16}^{10} \int_{10}^{10} \int_{10}^$

90° RF

90° Bloch Simulation Result

• Each isochromat curve represents magnetization (M_x , M_y , M_z) of one frequency within an optimized 100 kHz bandwidth

• Phase alignment of M_x and M_y frequency isochromats at the end of pulse

• 90° flip of M_z

90° Bloch Simulation Result

• Each isochrone curve represents magnetization (M_x , M_y , M_z) of one frequency within an optimized 100 kHz bandwidth

- Phase alignment of $M_{\rm x}$ and $M_{\rm y}$ frequency isochrones at the end of pulse

• 90° flip of M_z

180° M_Y component when M_Y(0)=1

180° M_z component when M_y (0)=1

180° RF, M_Y(0)=1

180° M_{γ} component when M_{χ} (0)=1

90° M_v component

180° RF, M_X(0)=1

Optimized Dithered-Pulse Simulation

Optimized Dithered-Pulse Simulation

Amplitude- and Frequencymodulated dithered-pulse

Spectrum of pulse

100 kHz optimization bandwidth

Optimized Dithered-Pulse Simulation

100 kHz optimization bandwidth

Accurate Reproduction of Pulse on Hardware

Oscilloscope FFT of pulse

Irene Kuang (#1131)

Magnitude and Phase of M_{xv} at end of 90 °

Magnitude and Phase of $\rm M_{xy}$ at end of 180 $^{\circ}$

Spokes-and-hub permanent magnet array

[4] Kuang et al., Equivalent-Charge-Based Optimization of Spokes-and-Hub Magnets for Hand-Held and Classroom MR Imaging. Int. Soc. Magn. Res. Med., 2019.

Field variation in permanent magnet array

<u>Bandwidth of 8x8x8 mm volume:</u> x-y slice: ±2.5 kHz y-z slice: ±25 kHz

Full RF Signal Chain

Field variation vs. magnet geometry (simulation)

ISMRM, 13 August 2020

Irene Kuang (#1131)

Field variation vs. magnet geometry (measurement)

ISMRM, 13 August 2020

Irene Kuang (#1131)

Using the same 90° and 180° pulse on 3 magnets with different center frequencies and homogeneity

Magnet and Permanent Gradients

ISMRM, 13 August 2020

Irene Kuang (#1131)

0.3

0.4

0.5

Time (ms)

0.6

0.7

Acknowledgements

- NIH NIBIB R01EB018976
- MIT-MGH seed grant
- Skolkovo Institute of Science and Technology Next Generation Program
- MIT EECS department

Nick Arango MIT

Jason Stockmann Martinos/HMS

Elfar Adalsteinsson MIT

Jacob White MIT

MGH/HST Athinoula A. Martinos Center for Biomedical Imaging

Irene Kuang (#1131)

ISMRM, 13 August 2020

Thank You!

Live Q&A Session Engineering & Safety of MRI Thursday, 13 August 2020 14:20 – 15:05 UTC